Stockage pour les énergies renouvelables : Evaluation et Modélisation de la batterie Plomb-Acide

Doctorant : Frédéric COUPAN
Date : 26 janvier 2017

Résumé :

Ce travail comprend deux volets. Un premier volet plus « stratégique » concernant

l’importance du stockage pour les énergies renouvelables. Un deuxième volet de plus en plus technique et de plus en plus précis concernant le positionnement du stockage électrochimique, la place qu’y tient la batterie Plomb Acide, les variantes technologiques, pour arriver à une modélisation électrochimique détaillée du type de batterie retenu.

Dans le premier volet, le chapitre 1 de la thèse met en évidence le bon positionnement du stockage électrochimique pour les besoins des énergies renouvelables. Vis-à-vis des fluctuations aléatoires de la ressource, le temps est un élément élément important de la discussion : temps de stockage d’une part, temps de mobilisation de l’énergie stocké d’autre part. A cette égard , le cahier des charges pour le lissage de production d’une unité connectée au réseau est bien différent des applications de stockage pour un système de production autonome.

Le deuxième chapitre devient plus technique, à l’occasion de la comparaison de la batterie au plomb avec les autres systèmes de stockage. L’idée directrice est d’appuyer cette discussion sur des arguments liés au bases physiques de fonctionnement des composants étudiés : c’est en même temps un prétexte pour commencer l’introduction de principes de bases d’électrochimie qui seront développés et utilisés par la suite. On a raisonné sur trois grandes familles : accumulateurs (exemples batterie au plomb, NiMH, Lithium ion), systèmes de type redox ou plus généralement combustible externe (exemple pile à combustible) et super capacités. Comparaison globalement peu flatteuse pour les performances moyennes de la batterie au plomb, sauvée par son bon rapport performances/prix.

Le troisième chapitre entre dans le détail des variantes techologiques, qui démontre une grande flexibilité permettant des compromis pour s’adapter à des besoins spécifiques très variés. On s’est attaché à chercher les aspects spécifiques peu explorés pouvant mener à des améliorations, notamment au niveau de mécanismes réactionnels mis en évidence récemment, en particulier au niveau de l’électrode positive (en liaison notamment avec la mise en évidence par Pavlov d’une phase intermédiaire entre PbO2 et l’électrolyte, de gel Pb(OH)2, aux propriétés mal élucidées). Nous avons placé dans ce chapitre une analyse détaillée de l’hydrolyse, prenant en compte la recombinaison directe de O2 et H2 à l’électrode négative citée également par Pavlov. Ces éléments seront directement repris et complétés au chapitre 4 en modélisation.

Le chapitre 4, consacrée à la modélisation et l’expérimentation est l’aboutissement du travail progressif d’introdution de bases d’électrochimie appliquées à la batterie. Il va souligner le rôle central des mécanismes de diffusion/migration dans le fonctionnement.
Un premier volet « mathématique » concerne une approximation des équations de diffusion par un réseau de composants discret, optimale du point de vue du nombre de composants. Le modèle global de la batterie peut shématiquement être décomposé en trois grandes fonctions : diffusion, activation, hydrolyse. Ces fonctions sont interconnectées, mais on s’efforcera de les introduire successivement sous forme découplée (au moins de façon approchée). Une première étape est d’obtenir, en grande partie à partir d’expérimentations spécifiques, des valeurs réalistes des paramètres du modèle.

Les simulations effectuées démontrent la capacité du modèle à décrire correctement le comportement de la batterie dans les situations les plus variées.

Contact

Pour contacter l'École Doctorale, utilisez le formulaire de contact ci-dessous. Nous vous remercions de remplir l’ensemble des champs (★) en étant clair et précis afin qu’une réponse appropriée puisse être apportée.

Actualités